M1.(a) add excess copper carbonate (to dilute hydrochloric acid) accept alternatives to excess, such as 'until no more reacts'
filter (to remove excess copper carbonate) reject heat until dry
heat filtrate to evaporate some water or heat to point of crystallisation accept leave to evaporate or leave in evaporating basin
leave to cool (so crystals form)
until crystals form
must be in correct order to gain 4 marks
(b) $M_{r} \mathrm{CuCl}_{2}=134.5$
correct answer scores 4 marks
moles copper chloride $=\left(\right.$ mass $\left./ M_{r}=11 / 134.5\right)=0.0817843866$
$M_{\mathrm{r}} \mathrm{CuCO}_{3}=123.5$

Mass $\mathrm{CuCO}_{3}\left(=\right.$ moles $\left.\times \mathrm{M}_{2}=0.08178 \times 123.5\right)=10.1(00)$

(c) $\frac{79.1}{100} \times 11.0$
 or
 11.0×0.791
 8.70 (g)

 accept 8.70(g) with no working shown for 2 marks

 accept 8.70(g) with no working shown for 2 marks
 (d) Total mass of reactants $=152.5$

134.5
152.5

$$
\text { allow ecf from step } 1
$$

88.20 (\%)
allow 88.20 with no working shown for 3 marks
(e) atom economy using carbonate lower because an additional product is made or carbon dioxide is made as well
allow ecf

M2.(a) (delivery) tube sticks into the acid
the acid would go into the water or the acid would leave the flask or go up the delivery tube
ignore no gas collected
(b) any one from:

- bung not put in firmly / properly
- gas lost before bung put in
- leak from tube
(c) all of the acid has reacted
(d) take more readings in range 0.34 g to 0.54 g
take more readings is insufficient
ignore repeat
(e) $\underline{95}$

24000
0.00396
or
3.96×10^{-3}
(f) use a pipette / burette to measure the acid
because it is more accurate volume than a measuring cylinder or
greater precision than a measuring cylinder
or
use a gas syringe to collect the gas
so it will not dissolve in water
or
use a flask with a divider
accept description of tube suspended inside flask
so no gas escapes when bung removed
(g) they should be collected because carbon dioxide is left in flask at end
and it has the same volume as the air collected / displaced

M3.(a) X:
Fe^{2+} / iron(II), SO_{4}^{2-} / sulfate
allow iron(II) sulfate or FeSO_{4}

Y:
Na^{+}/ sodium, I^{-}/ iodide
allow sodium iodide or Nal

Z:
Fe^{3+} / iron(III), $\mathrm{Br}^{-} /$bromide
allow iron(III) bromide
or FeBr_{3}
correct identification of any two ions = one mark correct identification of any four ions = two marks
(b) any five from:
allow converse arguments
method 1

- weighing is accurate
- not all barium sulfate may be precipitated
- precipitate may be lost
- precipitate may not be dry
- takes longer
- requires energy
allow not all the barium hydroxide has reacted
method 2
- accurate
- works for low concentrations
allow reliable / precise

M4.(a) copper has delocalised electrons
accept copper has free electronsignore sea of electrons or mobile electrons
(electrons) which can move through the metal/structure allow (electrons) which can carry a charge through the metal/ structure
(b) (i) $\quad\left(\mathrm{M}_{1} \mathrm{FeCl}_{3}=\right) 162.5$
correct answer with or without working gains 3 marks can be credited from correct substitution in step 2
or

2 (moles of) $\mathrm{FeCl}_{3}=325$
or
$112 \rightarrow 325$

$$
\begin{aligned}
& \frac{11.20}{56} \times 162.5 \\
& \text { allow ecf from step } 1 \\
& \frac{325}{112} \times 11.2
\end{aligned}
$$

$=32.5$
accept 32.48

(ii) 74.8

accept 74.77-75
accept ecf from (b)(i)
if there is no answer to part(i)
or
if candidate chooses not to use their answer then accept 86.79-87

