

accept 10.1 with no working shown for 4 marks $\frac{79.1}{100} \times 11.0$ or 11.0×0.791 8.70 (g)

accept 8.70(g) with no working shown for 2 marks

(d) Total mass of reactants = 152.5

1

1

1

<u>134.5</u>

152.5

allow ecf from step 1

1

88.20 (%)

1

allow 88.20 with no working shown for 3 marks

(e) atom economy using carbonate lower because an additional product is made **or** carbon dioxide is made as well

allow ecf

[14]

M2. (a)	(delivery) tube sticks into the acid			
		the acid would go into the water or the acid would leave the flask or go up the delivery tube ignore no gas collected		
	(b)	 any one from: bung not put in firmly / properly gas lost before bung put in leak from tube 		
	(c)	all of the acid has reacted		
	(d)	take more readings in range 0.34 g to 0.54 g		
	(e)	take more readings is insufficient ignore repeat 95 24000		
		0.00396 or 3.96×10^{-3}		

accept 0.00396 or 3.96×10^{-3} with no working shown for **2** marks

(f)	use a pipette / burette to measure the acid	1	
	because it is more accurate volume than a measuring cylinder or greater precision than a measuring cylinder or use a gas syringe to collect the gas		
	or use a flask with a divider accept description of tube suspended inside flask so no gas escapes when bung removed	1	
(g)	they should be collected because carbon dioxide is left in flask at end	1	
	and it has the same volume as the air collected / displaced	1	[11]

M3.(a) X: Fe^{2+} / iron(II), SO_4^{2-} / sulfate allow iron(II) sulfate or FeSO4 1 Y: Na⁺ / sodium, I⁻ / iodide allow sodium iodide **or** Nal 1 Z: Fe³⁺ / iron(III), Br⁻ / bromide allow iron(III) bromide or FeBr₃ correct identification of any two ions = one mark correct identification of any four ions = two marks 1 any five from: (b) allow converse arguments

method 1

- weighing is accurate
- not all barium sulfate may be precipitated
- precipitate may be lost
- precipitate may not be dry
- takes longer
- requires energy

allow not all the barium hydroxide has reacted

method 2

- accurate
- works for low concentrations allow reliable / precise

[8]

5

M4.(a) copper has delocalised electrons

accept copper has free electronsignore sea of electrons **or** mobile electrons

1

(electrons) which can move <u>through the metal / structure</u>

allow (electrons) which can carry a charge <u>through the metal / structure</u>

1

(b) (i)
$$(M, FeCl_3 =) 162.5$$

correct answer with or without working gains **3** marks can be credited from correct substitution in step **2**

1

or

2 (moles of) FeCl $_{3}$ = 325

or

112 → 325

$$\frac{11.20}{56} \times 162.5$$

allow ecf from step 1

$$\frac{325}{112} \times 11.2$$

1

= 32.5 accept 32.48

1

(ii) 74.8 *accept 74.77 - 75*

accept ecf from (b)(i)

if there is no answer to part(i)

or

if candidate chooses not to use their answer then accept 86.79 - 87

[6]

1